
Preparing for a Data Science Future


Michael Hites, CIO, Southern Methodist University
There are many analogies in sports for predicting the immediate future: anticipate the pass, skate to where the puck is going to be, and beat them to the punch. Even though technology keeps moving our goalposts in higher education, we know where the jobs of the future are going to be: data science and data analytics.
In addition to the focus on data science and data analytics, interdisciplinary collaboration is also vital to success in undergraduate education
If you say machine learning, artificial intelligence, big data, or any other trendy word from a headline or article, most people will pay little attention because it doesn’t feel relevant to their daily life. Even though data science is all around us, you can frighten or annoy people with tech talk because not enough effort is spent on relating data science and data analytics to everyday life. We can change that in higher education.
The rate at which information is produced is exponential, with estimates that 90 percent of all the data in the world was generated in the preceding two years. Current projections are that Internet of Things (IoT) devices will outnumber the world's population for the first time this year. There are more articles about data being the basis for growth for companies, and the U.S. alone faces a shortage of 1.5 million managers with the skills to analyze data to make decisions. Today’s “big data” will become meaningless because there will always be bigger data a few years from now. Given this reality, our students need tools today to work with data within their chosen professions in the future.
In response, an increasing number of universities have launched data science programs, some with new data science institutes or centers. While it is great that there are new and exciting master’s programs available, the applicability of data science and data analytics is broader, and it should not be limited to a single discipline. It should be integrated into all degree programs, and specifically, the undergraduate curriculum.
In higher education, we need to evolve our programs to elegantly use data science without being perceived as a geeks-only degree. At Southern Methodist University (SMU), data science is defined as an interdisciplinary field consisting of methods and systems to extract knowledge and insights from data. It encompasses statistics, machine learning, visualization, business analytics, data analytics, and scientific computing. SMU has launched an interdisciplinary undergraduate program around data science as well as a Ph.D. in data science. Additionally, SMU has started construction on the Ford Research and Innovation Building, an interdisciplinary gathering place that will be home to the gaming program, high performance computing, and data science for students of all disciplines. This type of “all-in” approach is a reflection of the importance of data in all programs of study.
In addition to the focus on data science and data analytics, interdisciplinary collaboration is also vital to success in undergraduate education. The Illinois Institute of Technology’s IPRO program is an innovative undergraduate experience that is about 20 years old. Students are required to take two interdisciplinary courses in order to receive their bachelor’s degree. By making the interdisciplinary courses mandatory, it creates an environment of innovation and engagement for all students, not just those in certain disciplines.
While some programs use terms like ‘interdisciplinary,’ ‘collaboration,’ or ‘inter-professional’ as a way to describe their programs, SMU uses “inquiry” to represent interdisciplinary innovation based in a data-driven world, using creative and interactive technologies. The inquiry program is designed to be an interactive experience, and it features the critical use of data about people, society, basic research, and the creative experience. As an example of socially relevant data analysis, SMU’s National Center for Arts Research conducts data-based research on the economic health of the arts and culture industry covering 2,700 arts organizations across 11 arts disciplines. This demonstrates the shift from “data science” and “liberal arts” as two different worlds to a comprehensive fusion of “data arts and sciences.”
Gaming is also a key component of data science. At New Mexico State University, the gaming expertise is embedded in the college of agriculture, and it is used to facilitate the extension mission by making games for children. Because the gaming program exists, it can partner with other disciplines throughout NMSU to develop creative and interactive ways to teach and perform research. A properly designed game is a tool for understanding complex problems elaborated by users who become co-creators in the act of discovery and visualization.
On the flipside, too much data is bad for the soul, and when students experience information overload, it produces lapses in knowledge and results in a failure to act. Solutions to information overload will come from those who understand Aristotle as well as Python. It will require domain experts in all disciplines to determine how information can be deployed, integrated, analyzed, and experienced in the ways needed by a society struggling with so much data. Regardless of their academic program, students should be able to fearlessly engage data, collaborate on intellectually diverse interdisciplinary teams, embrace the media of the interactive era, and contemplate the impact of innovation and disruption on society.
Given all of this activity, how does a CIO go about supporting it? At SMU, we have one IT department, and it covers all aspects of teaching, research, and administrative IT. Our academic technology support includes a representative from the IT shared service that is embedded in each of the schools to work directly with the faculty and deans. Additionally, our centralized data science support service includes staff specializing in high performance computing, Internet of Things, data science, data analytics, and data warehousing. These specialized and centralized IT staff work alongside our infrastructure, application development, and help desk teams. This combination of centralized and embedded IT staff, that are all part of the same IT unit, allows us to support data science and inquiry initiatives throughout all schools, departments, and programs at SMU.
The IT staff embedded in each of the schools, meet on a regular basis, and they assist in translating local needs to central IT projects. In practice, this means that the same Linux administrators support both the high-performance computing cluster and the ERP servers. Our database administrators and integration teams link software together, create administrative datamarts, and help researchers in the school of education develop datasets for studying learning effectiveness in local school districts. Our IT group teaches R, studies classroom utilization data, and helps faculty change traditional physics experiments into IoT exercises. Being able to cover a wide range of IT problem-solving with the same staff allows us to minimize expenses and maximize the breadth of service.
Data science, data analytics, gaming, and interdisciplinary learning will unlock the jobs of the future, and higher education is fundamental to preparing the next generation of workers who embrace data every day. Being well versed in data does not mean that you have to be a geek, and what we have shown with our IT service model is that you can support big ideas without extraordinary increases in IT funding and without creating unnecessarily redundant IT groups. Such an approach may be your game winning strategy.
ON THE DECK

Featured Vendors
K16 Solutions: Learning Management Systems (LMS) Migration Solutions, Created by Educators for Educators
Ask School Data (ASD): AI-Powered Virtual Data Coaching Solution that Provides Real-Time Student Data to Teachers
Liaison International: Streamlining the Enrollment Process with Institution-Wide Data and Responsive, Cross-Media Marketing
Education Networks of America (ENA): Turnkey Infrastructure Solutions Designed for K-12 Schools and Libraries
Verificient Technologies: Fostering Credibility for Online Education with Proctorless Remote Monitor
Huron Consulting Group: Helping Colleges and Universities better align Operations to achieve strateg
Cumulus Global: Helps Business, Schools, And Local Governments Achieve Their Goals By Leveraging The
LearningMate Solutions Inc.: Global Leader In Providing Content And Technology Services For The Educ
Globaloria: Invent. Build. Share: Advancing Computing Innovation And Digital Citizenship Skills Star
Cyanna Educational Services: Consultative Service For Top-Quality Schooling And Higher Education Sys
EDITOR'S PICK
Essential Technology Elements Necessary To Enable...
By Leni Kaufman, VP & CIO, Newport News Shipbuilding
Comparative Data Among Physician Peers
By George Evans, CIO, Singing River Health System
Monitoring Technologies Without Human Intervention
By John Kamin, EVP and CIO, Old National Bancorp
Unlocking the Value of Connected Cars
By Elliot Garbus, VP-IoT Solutions Group & GM-Automotive...
Digital Innovation Giving Rise to New Capabilities
By Gregory Morrison, SVP & CIO, Cox Enterprises
Staying Connected to Organizational Priorities is Vital...
By Alberto Ruocco, CIO, American Electric Power
Comprehensible Distribution of Training and Information...
By Sam Lamonica, CIO & VP Information Systems, Rosendin...
The Current Focus is On Comprehensive Solutions
By Sergey Cherkasov, CIO, PhosAgro
Big Data Analytics and Its Impact on the Supply Chain
By Pascal Becotte, MD-Global Supply Chain Practice for the...
Technology's Impact on Field Services
By Stephen Caulfield, Executive Director, Global Field...
Carmax, the Automobile Business with IT at the Core
By Shamim Mohammad, SVP & CIO, CarMax
The CIO's role in rethinking the scope of EPM for...
By Ronald Seymore, Managing Director, Enterprise Performance...
Driving Insurance Agent Productivity with Mobile and Big...
By Brad Bodell, SVP and CIO, CNO Financial Group, Inc.
Transformative Impact On The IT Landscape
By Jim Whitehurst, CEO, Red Hat
Get Ready for an IT Renaissance: Brought to You by Big...
By Clark Golestani, EVP and CIO, Merck
Four Initiatives Driving ECM Innovation
By Scott Craig, Vice President of Product Marketing, Lexmark...
Technology to Leverage and Enable
By Dave Kipe, SVP, Global Operations, Scholastic Inc.
By Meerah Rajavel, CIO, Forcepoint
AI is the New UI-AI + UX + DesignOps
By Amit Bahree, Executive, Global Technology and Innovation,...
Evolving Role of the CIO - Enabling Business Execution...
By Greg Tacchetti, CIO, State Auto Insurance
Read Also
Disrupt Your Legacy Application Portfolio to Improve Security And...
Why a Credentialing Strategy Must be Part of Your Digital Strategy
The Convergence of IT with the Internet of Things Innovation
It’s On People: The Undeniable Cultural Impact in a Digital...
A Promising Road Ahead for Insurtech
Bolloré Logistics Australia becomes a global leader in the use of...
